Linking climate change to community-level impacts on copepods via a new, trait-based model

Neil Banas,* Eva Møller, Torkel Nielsen, Lisa Eisner

*Univ of Strathclyde, Glasgow, UK neilbanas.com/projects

Region-specific shifts in zooplankton community composition

C. finmarchicus vs C. helgolandicus

impacts on pollock, salmon, cod, forage fish like herring and sandeels, seabirds, whales....

Past approaches

Optimal annual routines

(Varpe et al. 2007, 2009; Houston & McNamara 1999, Clark & Mangel 2000)

focus on reserves and timing

Emergent copepod communities

(Record et al. 2013)

trait-based metacommunity

Coltrane (Copepod Life-history traits and adaptation to novel environments)

Diapause is on/off based on a "myopic" criterion; turns off development, ingestion, and mortality, and reduces metabolism to 1/4 (Maps et al. 2012)

survivorship **N**

Two versions:

"egg/reserves": explicit model for income egg production (from ingestion) and capital egg production (from R)

"potential": replace R with free scope φ ; look for the optimal date on which to spend it on eggs (i.e. the stable cycle that maximises egg fitness)

A general theory of large zooplankton in relation to environment ought to be able to reproduce

Idealised "global biogeography" testbed

Gaussian window of prey availability; constant surface temperature; deep temperature = $0.4 \cdot \text{surface}$

C. glacialis/marshallae abundance (log mean, ind m^{-2}) 3 8 7 2.5 32 34 Annual mean surface temperature (°C) -6 • • 0 2 • • • 210 Population growth rate ۲ 5 1100 • • 1600 0 0 5700 • 2600 1.5 4 0 0 0 3 1 0 2 O 0.5 Southeast Bering Sea (M2), \bigcirc ----1 1971-2012 O 0 Northeast Bering Sea (M8), 1971-2012 0 0 160 60 80 100 140 180 20 40 120 ()Date of ice retreat (yearday) Increasing ice algae Bloom delayed by winter mixing Bloom follows ice retreat

Bering Sea, C. glacialis/marshallae

At both coarse and fine levels of detail, the threshhold for viability of high-latitude *Calanus* is mainly a matter of **timing**, **not temperature**

Warming per se is not necessarily a stressor

Disko Bay

1996–97 annual cycle + two axes of diversity: u_0 (development rate \rightarrow adult size) t_{egg} (delay between maturation and egg production)

Where this is headed

Summary

Many patterns in *Calanus* spp. (in latitude, time, and trait space) can be reproduced as a consequence of a handful of constraints in an individual's energy budget...

total energy available in an environment per year; energy and time required to build a body; metabolic and predation penalties for taking too long to mature and reproduce; size and temperature scalings for vital rates

Phenology is crucial, but *not* (in these examples) through match/mismatch.

This approach constitutes a metacommunity model on top of which one can layer other species-level or region-specific constraints: cues for diapause, physiology of egg production, prey quality and selectivity, environmental dependence of predation, and so on.

neilbanas.com/projects/coltrane