Comparison of Metabarcoding and Microscopy for Estuarine Plankton Monitoring: Quantitative Character and Non-Indigenous Species Detectability

David Abad, Aitor Albaina, Mikel Aguirre, Aitor Laza-Martínez, Ibon Uriarte, Arantza Iriarte, Fernando Villate, Andone Estonba

- Plankton is essential for ecosystem functioning
- Used as indicators of ecosystem change
- Limitations:
- Difficult
- Time-consuming
- Expertise
- Cryptic species

http://slideplayer.com/slide/8127598/
- Metabarcoding as an alternative:
- Lots of information
- Sensitivity and resolution
- Detection of rare taxa, cryptic or NIS

- Limitations: Some groups are poorly represented in databases
- Quantification is affected by:
- Copy Number Variation (CNV)
- Technical biases during DNA extraction, PCR or bioinformatics

Main objective: to compare microscopy against metabarcoding to assess the usefulness of metabarcoding for estuarine plankton monitoring

Others:

- Spatio-temporal structure in relation with environmental parameters
- Effects of database completeness in taxon assignment
- Sensitivity for NIS detection
- Macrozooplankton from oceanic samples
- 100\% identity for sequences corresponding to the "Para-UndEuch" group \rightarrow single OTU for 8 species

Number of individuals per taxa and sample:	A-101	B-101	C-11	D-101		
Meganyctiphanes norvegica	congeneric	Copepod	101	33	1	100
Undeuchaeta major	coperid	13	39	1	1	
Undeuchaeta plumosa	pair	Copepod	3	9	1	1
Euchirella rostrata	congeneric	Copepod	20	60	1	1
Euchirella curticauda	pair	Copepod	2	6	1	1
Paraeuchaeta gracilis	congeneric	Copepod	22	66	1	1
Paraeuchaeta tonsa	pair	Copepod	12	36	1	1
Euchaeta hebes	congeneric	Copepod	15	45	1	1
Euchaeta acuta	pair	Copepod	3	9	1	1
Pleuromamma robusta		Copepod	23	69	1	1
Candacia armata		Copepod	10	30	1	1
Calanus helgolandicus		Copepod	7	21	1	1
Tomopteris spp.		Polychaeta	25	80	1	1

- 134 OTUs: only 6 from the sorted spp. (89.25\% reads)
- Comparison within each particular sample: only mock-D significant ($r=$ 0.99 and $P<0.01) \rightarrow$
sample dominated by a taxon (low eveness) \rightarrow probably due to different CNV between species

Ecology and Evolution

$18 S$ rRNA V9 metabarcoding for diet characterization: a critical evaluation with two sympatric zooplanktivorous fish species
Aitor Albaina ${ }^{1}$, Mikel Aguirre ${ }^{1}$, David Abad ${ }^{1}$, María Santos ${ }^{2}$ \& Andone Estonba ${ }^{1}$

Figure 3. Mock samples. Relative abundance of (A) microscopy counts, (B) estimated biomass (CC dry weight and, (C) 185 V9 reads, for the six OTUs within mock samples. Five technical replicates were sequenced ($1-5$; bottom graph). No bias in OTUs distribution was reported for the techrical replicates (Knukal-Walls lest). Legend superimposed.

- Estuary of Bilbao
- Huge anthropogenic impact
- Stratified and channeled
- Undergoing a recovery program since the 80s

Figure from Villate et al. (2013)
4

- Three size fractions: $0.22-20,20-200$ and $>200 \mu \mathrm{~m}$
- Summer (June, July) and Autumn (September, October) in 30 and 35 salinities
- Environmental variables

DNA extraction

- 18S V9 amplification (Stoeck et al., 2010; EMP)
- Sequencing (Illumina MiSeq 2x150)
- Databases (Silva 111 \& 119)
- Bioinformatic analysis (closed-reference, 99\% similarity)

- Four "different" databases:
- Two standard (Silva 111 and 119)
- Two custom (with addition of 18 S sequences)
- Greater number of seqs \rightarrow higher assignment rate

	Silva 111			Silva 111 Custom			Silva 119			Silva 119 Custom		
	0.20-20	20-200	>200	0.20-20	20-200	>200	0.20-20	20-200	>200	0.20-20	20-200	>200
June 30	28,21	5,25	14,46	40,96	67,99	87,34	55,60	5,63	14,67	55,69	68,12	87,34
June 35	50,71	17,38	24,26	55,62	80,59	86,81	55,26	22,96	48,81	60,09	80,52	86,49
July 30	42,38	1,16	13,69	42,42	10,79	59,68	23,95	0,98	14,85	23,99	10,36	59,47
July 35	46,03	35,28	88,17	46,05	43,39	89,68	53,61	51,20	91,24	53,62	57,81	92,64
Sept 30	22,53	0,75	24,97	22,57	21,67	33,7	22,78	6,55	29,91	22,80	21,68	33,71
Sept 35	38,21	21,30	10,58	38,23	72,84	86,58	54,06	24,55	12,81	54,08	73,71	87,13
Octo 30	30,36	2,31	13,35	30,63	10,16	79,31	35,11	2,44	76,93	35,14	8,85	79,31
Octo 35	25,05	6,63	6,54	25,48	39,69	35,48	42,18	16,38	19,58	42,59	49,41	39,62
Mean	35,44	11,26	24,5	37,75	43,39	69,82	42,82	16,34	38,60	43,50	46,31	70,71
Global	23,73			50,32			32,58			53,51		

Table 2 Percentage of sequences that were assigned to taxonomy using four different databases. Similarity threshold was set at at 99%. Total assignment percentage for each database is shown along with those for each specific size fraction (0.22-20, $20-200$ and $>200 \mu \mathrm{~m}$), salinity (30 and 35 ppt) and sampling month (June-October)

Metabarcoding for Estuarine Plankton Monitoring

Fig. 1 Proportion of taxonomic ranks in each sample based on the metabarcoding approach. A total of 17 taxonomic ranks ($>1 \%$ abundance) are shown.

- Higher assignation for 35 (64.8\%) than 30 ppt (42.2\%) in most of the cases (37 of 48 sequenced samples)
- Unassigned percentage lower as size-fraction increased: 56.5, 53.7 and 29.3%, respectively
- Maxillopoda dominated the 20-200 and >200 $\mu \mathrm{m}$ (mainly copepods and barnacles)
- More diverse assemblage for the 0.22-20 $\mu \mathrm{m}$ (e.g. Dinophyceae, Cryptophyceae, ...)

Metabarcoding for Estuarine Plankton Monitoring

Results

-44 taxa in common

- Most abundant (>1\% abundance):
- 11 by both
- 12 only with Microscopy
- 2 only with Metabarcoding
- Metabarcoding detected congeneric species (e.g genus Thalassiosira) but missed others (e.g. Apedinella radians, Teleaulax gracilis, ...)
- Plankton developmental stages
${ }^{\circ}$ Comparable spacial and temporal patterns by both methodologies for the $>200 \mu \mathrm{~m}$:
- DO and water transparency with salinity
- Precipitation with date

- Neither approach identified a temporal pattern in the 0.22-200 $\mu \mathrm{m}$, but spatial pattern only by microscopy

Fig. 2 Metabarcoding and microscopy CCA results. Only taxa with an abundance of 1% or higher in at least one sample were taken into account.
(a) $>200 \mu \mathrm{~m}$ metabarcoding, (b) $>200 \mu \mathrm{~m}$ microscopy, (c) $0.22-200 \mu \mathrm{~m}$ metabarcoding and (d) 0.22-200 $\mu \mathrm{m}$ microscopy.

- Only taxa uncovered by both methods
- Significant correlations when comparing all taxa within each sample in most cases
- Lack of correlation explained by CNV..
- No differences were found for counts or biomass

Fraction	Salinity (n)	Month	ρ (counts)	ρ (biomass)
>200	30 (4)	JUN	0.77*	0.89**
	30 (4)	JUL	0.95***	0.88*
	30 (4)	SEPT	0.65	0.65
	30 (4)	OCT	0.51	0.51
	35 (10)	JUN	0.63**	0.63 **
	35 (10)	JUL	-0,27	-0.08
	35 (10)	SEPT	0.51*	0.58**
	35 (10)	OCT	0.52*	0.49*
0.22-200	30 (13)	JUN	0.48**	0.45*
	30 (13)	JUL	0.44*	0.48**
	30 (13)	SEPT	0.67***	0.69***
	30 (13)	OCT	0.75***	$0.77^{* * *}$
	35 (22)	JUN	0.72***	0.73 ***
	35 (22)	JUL	0.55***	0.59***
	35 (22)	SEPT	$0.58{ }^{* * *}$	$0.74 * * *$
	35 (22)	OCT	0.40**	0.44**

Table 4 Correlations between metabarcoding and microscopy-based analysis of community compositions. Spearman's rank correlation coefficient (ρ) and Pvalues are shown; $\mathrm{P}<0.01$ (***), $\mathrm{P}<0.05\left({ }^{* *}\right)$ and $\mathrm{P}<0.1$ (*). Relative abundances from metabarcoding were compared against both microscopybased relative abundances and biomass.

- Similar relative abundances for Acartia tonsa in 30 ppt by both approaches

Only detected by metabarcoding in 35 ppt

Fig. 3 Comparison of metabarcoding and microscopy when assessing two NIS. Acartia tonsa (a, b) and Pseudodiaptomus marinus (c, d) relative abundances in the >200 $\mu \mathrm{m}$ size fraction are divided by salinity (30 and 35 ppt). " + " stands for low detection percentages. "-" is showed when the species was not detected.

- Pseudodiaptomus marinus was detected in all the samples with metabarcoding
- Microscopy only in two (30 ppt)
- Negative controls/blanks no sequences

Fig. 3 Comparison of metabarcoding and microscopy when assessing two NIS. Acartia tonsa (a, b) and Pseudodiaptomus marinus (c, d) relative abundances in the >200 $\mu \mathrm{m}$ size fraction are divided by salinity (30 and 35 ppt). " + " stands for low detection percentages. "-" is showed when the species was not detected.

- Similar trends for zooplankton but not for phytoplankton \rightarrow poor representation of the latter in databases
- Addition of representative sequences from local species \rightarrow improval in taxonomic assignement

Correlations between relative abundances \rightarrow semiquantitative

- Taxonomic resolution issue of 18S V9 \rightarrow combination with other markers
- Superior sensitivity in the detection of two NIS
- Same set of samples with COI and 18S V1-2
- Similar estimates in most cases, but higher for COI than for the 18S regions
- 46 taxa common to all markers \rightarrow half of them typically found in the estuary
- Taxonomic composition different in COI for the 0.22-20 size fraction \rightarrow very few representative sequences for phytoplankton

SALINITY	SIZE	MONTH	18SV1-2	18SV9	COI
30	200	JUNE	2,03 (291)	0,80 (438)	2,64 (523)
		JULY	1,74 (204)	1,30 (552)	1,77 (190)
		SEPTEMBER	2,12 (78)	1,75 (423)	2,48 (238)
		OCTOBER	2,75 (170)	1,21 (220)	1,76 (225)
	20-200	JUNE	0,94 (893)	1,34 (1241)	3,19 (1782)
		JULY	1,43 (672)	1,22 (908)	2,61 (1812)
		SEPTEMBER	1,96 (178)	1,88 (355)	2,55 (540)
		OCTOBER	2,47 (197)	1,03 (422)	2,70 (592)
	0.22-20	JUNE	4,27 (229)	4,39 (239)	4,36 (259)
		JULY	3,86 (274)	3,39 (397)	4,48 (382)
		SEPTEMBER	3,69 (705)	3,68 (893)	4,55 (1764)
		OCTOBER	3,91 (806)	4,24 (755)	4,20 (2129)
35	200	JUNE	2,87 (129)	2,13 (255)	3,40 (239)
		JULY	2,35 (190)	0,64 (378)	1,03 (187)
		SEPTEMBER	2,99 (109)	1,38 (95)	3,54 (182)
		OCTOBER	1,93 (221)	2,13 (291)	3,18(299)
	20-200	JUNE	2,55 (537)	1,66 (477)	3,26 (1724)
		JULY	2,48 (959)	2,60 (1122)	2,35 (1988)
		SEPTEMBER	2,59 (162)	2,10 (359)	3,04 (288)
		OCTOBER	2,77 (132)	2,86 (203)	3,25 (384)
	0.22-20	JUNE	4,00 (217)	4,41 (293)	4,40 (260)
		JULY	4,08 (132)	3,78 (386)	4,59 (222)
		SEPTEMBER	4,03 (706)	4,03 (772)	4,77 (1638)
		OCTOBER	4,82 (1233)	4,85 (1460)	4,73 (2528)

Left. Alpha diversities (Shannon index) for each marker. Observed OTUs are included in brackets.
Above. Shared OTUs between markers.

THANKS FOR YOUR ATTENTION

CAMPUS OF INTERNATIONAL EXCELLENCE

