Comparison of Metabarcoding and Microscopy for Estuarine Plankton Monitoring: Quantitative Character and Non-Indigenous Species Detectability

David Abad, Aitor Albaina, Mikel Aguirre, Aitor Laza-Martínez, Ibon Uriarte, Arantza Iriarte, Fernando Villate, Andone Estonba

CAMPUS OF INTERNATIONAL EXCELLENCE

Introduction

- Plankton is essential for ecosystem functioning
- Used as indicators of ecosystem change
- Limitations:
 - Difficult
 - Time-consuming
 - Expertise
 - Cryptic species

http://slideplayer.com/slide/8127598/

Introduction

- Metabarcoding as an alternative:
 - Lots of information
 - Sensitivity and resolution
 - Detection of rare taxa, cryptic or NIS

- We have so many options Dep whate genome Dep w
- Limitations: Some groups are poorly represented in databases
- Quantification is affected by:
 - Copy Number Variation (CNV)
 - Technical biases during DNA extraction, PCR or bioinformatics

Main objective: to compare microscopy against metabarcoding to assess the usefulness of metabarcoding for estuarine plankton monitoring

Others:

- Spatio-temporal structure in relation with environmental parameters
- Effects of database completeness in taxon assignment
- Sensitivity for NIS detection

Macrozooplankton from oceanic samples

 100% identity for sequences corresponding to the "Para-Und-Euch" group → single OTU for 8 species

Number of individuals per	^r taxa and sa	mple:	A-101	B-101	C-11	D-101
Meganyctiphanes norveg	Euphausiid	101	33	1	100	
Undeuchaeta major	congeneric	Copepod	13	39	1	1
Undeuchaeta plumosa	pair	Copepod	3	9	1	1
Euchirella rostrata	congeneric	Copepod	20	60	1	1
Euchirella curticauda	pair	Copepod	2	6	1	1
Paraeuchaeta gracilis congeneric		Copepod	22	66	1	1
Paraeuchaeta tonsa	pair	Copepod	12	36	1	1
Euchaeta hebes	congeneric	Copepod	15	45	1	1
Euchaeta acuta	pair	Copepod	3	9	1	1
Pleuromamma robusta		Copepod	23	69	1	1
Candacia armata		Copepod	10	30	1	1
Calanus helgolandicus Co		Copepod	7	21	1	1
<i>Tomopteris</i> spp.	Polychaeta	25	80	1	1	

- 134 OTUs: only 6 from the sorted spp. (89.25% reads)
- Comparison within each particular sample: only mock-D significant (r = 0.99 and P < 0.01) →

sample dominated by a taxon (low eveness) → probably due to different CNV between species

Ecology and Evolution

Open Access

18S rRNA V9 metabarcoding for diet characterization: a critical evaluation with two sympatric zooplanktivorous fish species

Aitor Albaina¹, Mikel Aguirre¹, David Abad¹, María Santos² & Andone Estonba¹

Figure 3. Mock samples. Relative abundance of (A) microscopy counts, (B) estimated biomass (C dry weight) and, (C) 185 V9 reads, for the sk OTUs within mock samples. Five technical replicates were sequenced (1–5; bottom graph). No bias in OTUs distribution was reported for the technical replicates (Kruskal-Wallis test). Legend superimposed.

Study area

- Estuary of Bilbao
- Huge anthropogenic impact
- Stratified and channeled
- Undergoing a recovery program since the 80s

- Three size fractions: 0.22-20, 20-200 and > 200 μm
- Summer (June, July) and Autumn (September, October) in 30 and 35 salinities
- Environmental variables

- DNA extraction
- 18S V9 amplification (Stoeck *et al.*, 2010; EMP)
- Sequencing (Illumina MiSeq 2x150)
- Databases (Silva 111 & 119)
- Bioinformatic analysis (closed-reference, 99% similarity)

• Four "different" databases:

- Two standard (Silva 111 and 119)
- Two custom (with addition of 18S sequences)

• Greater number of seqs \rightarrow higher assignment rate

	Silva 111			Silva 111 Custom		Silva 119			Silva 119 Custom			
	0.20-20	20-200	>200	0.20-20	20-200	>200	0.20-20	20-200	>200	0.20-20	20-200	>200
June 30	28,21	5,25	14,46	40,96	67,99	87,34	55,60	5,63	14,67	55,69	68,12	87,34
June 35	50,71	17,38	24,26	55,62	80,59	86,81	55,26	22,96	48,81	60,09	80,52	86,49
July 30	42,38	1,16	13,69	42,42	10,79	59,68	23,95	0,98	14,85	23,99	10,36	59,47
July 35	46,03	35,28	88,17	46,05	43,39	89,68	53,61	51,20	91,24	53,62	57,81	92,64
Sept 30	22,53	0,75	24,97	22,57	21,67	33,7	22,78	6,55	29,91	22,80	21,68	33,71
Sept 35	38,21	21,30	10,58	38,23	72,84	86,58	54,06	24,55	12,81	54,08	73,71	87,13
Octo 30	30,36	2,31	13,35	30,63	10,16	79,31	35,11	2,44	76,93	35,14	8,85	79,31
Octo 35	25,05	6,63	6,54	25,48	39,69	35,48	42,18	16,38	19,58	42,59	49,41	39,62
Mean	35,44	11,26	24,5	37,75	43,39	69,82	42,82	16,34	38,60	43,50	46,31	70,71
Global	23,73			50,32			32,58			53,51		

Table 2 Percentage of sequences that were assigned to taxonomy using four different databases. Similarity threshold was set at at 99%. Total assignment percentage for each database is shown along with those for each specific size fraction (0.22-20, 20-200 and >200 μ m), salinity (30 and 35 ppt) and sampling month (June-October)

Metabarcoding for Estuarine Plankton Monitoring

Results

- Higher assignation for 35 (64.8%) than 30 ppt (42.2%) in most of the cases (37 of 48 sequenced samples)
- Unassigned percentage lower as size-fraction increased: 56.5, 53.7 and 29.3%, respectively
- Maxillopoda dominated the 20-200 and >200 µm (mainly copepods and barnacles)
- More diverse assemblage for the 0.22-20 µm (e.g. Dinophyceae, Cryptophyceae, ...)

Metabarcoding for Estuarine Plankton Monitoring

Results

METABARCODING	MICROSCOPY	ACRONYM	METABARCODING	MICROSCOPY	ACRONYM		
	Centri c diato ms	CENT		Scenedesmus spp.	SCEN*	Table 3 List of most abundant taxa	from
	Chaetoceros curvisetus	CCUR		Pyramimon as spp.	PYRA	metabarcoding and microscopy. Only taxa wit	h >1%
	Chaetoceros debilis	CDEB	Ostreoco ccus tauri		OTAU	abundance in at least one of the samples are s	hown
	Chaetoceros socialis	CSOC	Ulva intestinalis		UINT	An aptorial marka these taxa identified by	/ both
	Chaetoceros spp.	CHAE	Uncultured phytoplankton		UPHY	All asterisk marks those taxa identilied by	DOUT
	Conticri bra weissflogii	CWEI		Choanoflagellates	CHOA	methodologies.	
Cyclotella cho ctawhatch ee and	1	CCHO		Leuco cryptos spp.	LEUC		
	Cyclotel la men eghinian a	CMEN*	Strombidium basimorphum	\backslash	SBAS		
Lepto cylindrus hargravesii		LHAR	Chelophyes appendiculata		CAPP	Thalassiosira allenii	TALL
	L. danicus/hargravesii	LDAN		Unidentified Siphon oph ora	USIP	Thalassiosira delicatula	TDEL
	Leptocylindrus aporus	LAPO*		Evadne nordmanii	ENOR*	Thalassiosira guillardii	TGUI
	Leptocylindrus convexus	LCON*		Evadne spinifera	ESPI*	Thalassiosira lundiana	TLUN
	Melosira varians	MVAR	Podon spp.		PODO		
	Navicula radio sa	NRAD		Podon intermedius	PINT	Heterosigma akasniwo	НАКА
	Pennate diatoms	PENN	Balanus balanus		BALA		
	Proboscia alata	PALA	Pelto gaster paguri		PPAG		
	Pseudo-nitzschia multistriata	PMUL		Cirripedia nauplius larvae	CNAL	4 1, 11 1,	A CDI
	Pseudo-nitzschia spp.	PSEU		Cimpedia cypris larvae	COYL	Apedinella radians	ASPI
61-1	Skeletonema sp.	SKEL	Acartia ciausi	Acartia clausi	ACLX*	Teleaulax gracilis	TGRA
Skeletonema menzett ti		SMEN*	Acartia Ionsa	Acartía tonsa	AIUA	L	
Skeletonema pseudocostatum		SPSE	a	Acaria sp. (copepodite)	ASEO		
Tenuicylindrus beigicus	Tenuicyfindrus belgicus	TBEL*	Calanipeda aquaedulcis	Catan iped a aquaedul cis	CAQU*	_	
The Incoloring a Hand	Tha fassiosira sp.	THAL	Catanus heigotandicus		CENT*	Ostreococcus tauri	ΟΓΑυ
Thalassiosira delle atula		TDEL	Centropages namatus	Continue	CENT*	Micromonas pusilla	MPUS
Thalassiosira aelicatula Thalassiosira quillardii		TOEL	Europing a outificant	Cuclops sp.	EACU		
Thalassiosira guinaran Thalassiosira lundiana		TUN	Emerpina acuitytons	Oithona davisae	ORPH		
Heterosioma akashiwo		HAKA	Othona nana	Oithona ua visae	ONAN		
The cost of the second	Apedinella radians	ASPI		Oithon a similis	OSIM*	Littoring littoreg	LITT
	Hemiselmis sr	HEMI*		Onca ea media	OMED*		CVEI
	Plagio selmis sp	PLAG	Paracalanus parvus	Paracalanus na vus	PPAR*	Gastropod veliger larvae	GVEL
Teleaulax acuta	Teleaulax acuta	TACU*	1 ar acarana s par vas	Pealanus (copepodite)	PCAL		
Teleaulax amphioxeia	Teleaulax amphioxeia	TAMP*	Pseudo ca lanus elon gatus	cananas (copiepo ana)	PELO		
	Teleaulax gracilis	TGRA	Pseudo diap tomus marinu s	Pseudodia ptomus marinus	PMAR*		
	Teleaulax minuta	TMIN	Temora longicomis	Temora longicornis	TLON	Balanus balanus	BALA
	Teleaulax spp.	TELE		Copepod nauplius	CNAU	Peltogaster paguri	PPAG
	Chrysochromulina spp.	CHRY*		Unidentified brachiura larva	e UBRL	Cirrinedia naunlius larvae	CNAL
	Prymnesiales	PRYM	Crassostrea gigas		CGIG		
	Gymnodiniales	GYMN	Mytilus edulis	/	MEDU	Cirripedia cypris larvae	CCYL
Gymnodinium aureolum		GAUR	Littorina littorea	1	LITT		
	Gyrodinium flagellare	GFLA		Gastrop od veliger larvae	GVEL	ernan	1 ta Zabal ZaZu
	Gyrodinium sp.	GYRO		Bivalve veliger larvae	BVEL		• 3
	Hetero capsa rotundata	HROT	Un cultured zo oplankton		UZOO		3
	Heters capsa sp.	HETE		Oikopleura sp.	OIKO*		
,	Katodinium spp.	KATO	Sabellaria alveolata		SALV		
	Pfiesteria-like	PFIE		Sagitta sp.	SAGI		4
Micromon as pusilla		MPUS	Scyliorhinus torazame		STOR		1

- •44 taxa in common
- Most abundant (>1% abundance):
 - 11 by both
 - 12 only with Microscopy
 - 2 only with Metabarcoding
- Metabarcoding detected congeneric species (e.g genus Thalassiosira) but missed others (e.g. Apedinella radians, Teleaulax gracilis, ...)

Plankton developmental stages

- Comparable spacial and temporal patterns by both methodologies for the >200 µm:
 - DO and water transparency with salinity
 - Precipitation with date

 Neither approach identified a temporal pattern in the 0.22 – 200 µm, but spatial pattern only by microscopy

Fig. 2 Metabarcoding and microscopy CCA results.Only taxa with an abundance of 1% or higher in at least one sample were taken into account. (a) >200 μm metabarcoding, (b) >200 μm microscopy, (c) 0.22-200 μm metabarcoding and (d) 0.22-200 μm microscopy.

- Only taxa uncovered by both methods
- Significant correlations when comparing all taxa within each sample in most cases
- Lack of correlation explained by CNV..
- No differences were found for counts or biomass

Fraction	Salinity (n)	Month	ρ (counts)	ρ (biomass)
	30 (4)	JUN	0.77*	0.89**
	30 (4)	JUL	0.95***	0.88*
	30 (4)	SEPT	0.65	0.65
> 200	30 (4)	OCT	0.51	0.51
>200	35 (10)	JUN	0.63**	0.63**
	35 (10)	JUL	-0,27	-0.08
	35 (10)	SEPT	0.51*	0.58**
	35 (10)	OCT	0.52*	0.49*
	30 (13)	JUN	0.48**	0.45*
	30 (13)	JUL	0.44*	0.48**
0.22-200	30 (13)	SEPT	0.67***	0.69***
	30 (13)	OCT	0.75***	0.77***
	35 (22)	JUN	0.72***	0.73***
	35 (22)	JUL	0.55***	0.59***
	35 (22)	SEPT	0.58***	0.74***
	35 (22)	OCT	0.40**	0.44**

Table 4 Correlations between metabarcoding and microscopy-based analysis of community compositions. Spearman's rank correlation coefficient (ρ) and P-values are shown; P < 0.01 (***), P < 0.05 (**) and P < 0.1 (*). Relative abundances from metabarcoding were compared against both microscopy-based relative abundances and biomass.

- Similar relative abundances for Acartia tonsa in 30 ppt by both approaches
- Only detected by metabarcoding in 35 ppt

Fig. 3 Comparison of metabarcoding and microscopy when assessing two NIS. *Acartia tonsa* (a, b) and *Pseudodiaptomus marinus* (c, d) relative abundances in the >200 µm size fraction are divided by salinity (30 and 35 ppt). "+" stands for low detection percentages. "-" is showed when the species was not detected.

 Pseudodiaptomus marinus was detected in all the samples with metabarcoding

- Microscopy only in two (30 ppt)
- Negative controls/blanks no sequences

Fig. 3 Comparison of metabarcoding and microscopy when assessing two NIS. Acartia tonsa (a, b) and Pseudodiaptomus marinus (c, d) relative abundances in the >200 µm size fraction are divided by salinity (30 and 35 ppt). "+" stands for low detection percentages. "-" is showed when the species was not detected.

• Similar trends for zooplankton but not for phytoplankton \rightarrow poor representation of the latter in databases

 Addition of representative sequences from local species → improval in taxonomic assignement

• Correlations between relative abundances \rightarrow semiquantitative

 Taxonomic resolution issue of 18S V9 → combination with other markers

Superior sensitivity in the detection of two NIS

- Same set of samples with COI and 18S V1-2
- Similar estimates in most cases, but higher for COI than for the 18S regions
- •46 taxa common to all markers \rightarrow half of them typically found in the estuary
- Taxonomic composition different in COI for the 0.22-20 size fraction \rightarrow very few representative sequences for phytoplankton

SALINITY	SIZE	MONTH	18SV1-2	18SV9	COI	18SV1-2	18SV9
		JUNE	2,03 (291)	0,80 (438)	2,64 (523)		
200	200	JULY	1,74 (204)	1,30 (552)	1,77 (190)		
	200	SEPTEMBER	2,12 (78)	1,75 (423)	2,48 (238)		
		OCTOBER	2,75 (170)	1,21 (220)	1,76 (225)	641	
		JUNE	0,94 (893)	1,34 (1241)	3,19 (1782)	722	1197
20	00 000	JULY	1,43 (672)	1,22 (908)	2,61 (1812)		
30	20 - 200	SEPTEMBER	1,96 (178)	1,88 (355)	2,55 (540)		
		OCTOBER	2,47 (197)	1,03 (422)	2,70 (592)	46	
		JUNE	4,27 (229)	4,39 (239)	4,36 (259)		
	0.22 - 20	JULY	3,86 (274)	3,39 (397)	4,48 (382)	24	10
		SEPTEMBER	3,69 (705)	3,68 (893)	4,55 (1764)	34	40
		OCTOBER	3,91 (806)	4,24 (755)	4,20 (2129)		
		JUNE	2,87 (129)	2,13 (255)	3,40 (239)	-	
	200	JULY	2,35 (190)	0,64 (378)	1,03 (187)	2540	
	200	SEPTEMBER	2,99 (109)	1,38 (95)	3,54 (182)	2049	
		OCTOBER	1,93 (221)	2,13 (291)	3,18 (299)		
		JUNE	2,55 (537)	1,66 (477)	3,26 (1724)		
25	20 200	JULY	2,48 (959)	2,60 (1122)	2,35 (1988)	COL	
35 20 - 200 0.22 - 20	20 - 200	SEPTEMBER	2,59 (162)	2,10 (359)	3,04 (288)	001	
		OCTOBER	2,77 (132)	2,86 (203)	3,25 (384)		
		JUNE	4,00 (217)	4,41 (293)	4,40 (260)	Left. Alpha diversities (Shannon	index) for each marker.
	0.00.00	JULY	4,08 (132)	3,78 (386)	4,59 (222)	Observed OIUs are included in	Drackets.
	0.22 - 20	SEPTEMBER	4,03 (706)	4,03 (772)	4,77 (1638)	Above. Shared OTUs between n	narkers.
		OCTOBER	4,82 (1233)	4,85 (1460)	4,73 (2528)		

THANKS FOR YOUR ATTENTION

CAMPUS OF INTERNATIONAL EXCELLENCE

www.ehu.es