

BEHAVIOR-DEPENDENT PREDATION RISK IN MARINE PLANKTONIC COPEPODS

an experimental and modelling approach

Hans van Someren Gréve, Rodrigo Almeda and Thomas Kiørboe

Centre for Ocean Life, DTU Aqua

Email: hvsg@aqua.dtu.dk

6TH Zooplankton Production Symposium, Bergen

- Motile behavior of prey influences:
 - 1. Encounter rate with predator
 - 2. Detection distance through hydrodynamic signals

- Motile behavior of prey influences: •

 - 2. Detection distance through hydrodynamic signals
 - <u>Activity & size</u> of prey

(Kiørboe et al. PNAS 2014)

PREDATION RISK IS <u>BEHAVIOR</u> DEPENDENT

Copepod feeding behavior

- Three main copepod feeding strategies
 - > Feeding strategy and motile behavior closely linked

Ambush

LOW

Cruise

Volume of water scanned per time unit

ne unit

Feeding behavior vs Predation risk

Ambush

LOW

Cruise

Feeding current

Fluid signal generation

Gender vs Predation risk

HIGH

Male predation risk

~EQUAL

Hypothesis

Differences in motility behavior result in differences in predation mortality:

Predation model

1. PREDICT PREDATION MORTALITY

- Prey-behavior-dependent encounter model
 - Prey behavior: *velocity* (v), *activity* (p), *hydrodynamic radius* (R₂)
 - Predator behavior: *velocity* (u)
 - Prey and predator size (R_1, R_3)
 - Input:
 - Behavioral observations of prey and predators

Experiments

2. QUANTIFICATION OF PREDATION MORTALITY

- Bottle incubation experiments (n=27)
 - 2 prey species simultaneously, ratio 1:1
 - Species with contrasting feeding behavior
 - Similar sizes

Experiments

2. QUANTIFICATION OF PREDATION MORTALITY

- Bottle incubation experiments (n=27)
 - 2 prey species simultaneously, ratio 1:1
 - Species with contrasting feeding behavior
 - Similar sizes
 - Males and females of the same species

Experiments

2. QUANTIFICATION OF PREDATION MORTALITY

- Bottle incubation experiments (n=27)
 - 2 prey species simultaneously, ratio 1:1
 - Species with contrasting feeding behavior
 - Similar sizes
 - Males and females of the same species
 - 3-5 prey concentrations (10-180 copepods L⁻¹)
 - Calculation of predation mortality & clearance rates
 - Prey reduction compared to controls after 24-48 hrs
 - Maxiumum clearance rates: Holling type II model fit

> Active feeding strategies are more risky!

Gender vs Predation risk

> Passive feeders: high predation bias towards males

Conclusions

• Differences in motility behavior imply differences in predation risk:

• Predation risk can be predicted from motility parameters in planktonic copepods

THANK YOU!

<u>Hans van Someren Gréve</u> Rodrigo Almeda Thomas Kiørboe

Centre for Ocean Life DTU Aqua, Denmark Email: hvsg@aqua.dtu.dk