Environmental controls on temporal and spatial patterns in pteropod abundance along the Western Antarctic Peninsula





#### Patricia S. Thibodeau, Deborah K. Steinberg, Claudine Hauri, & Hugh W. Ducklow



USA

#### Warming in the Western Antarctic Peninsula



Year

Sharon Stammerjohn

Average winter (June-Aug.) temperature +1.1°C per decade: 7°C since 1950: 5x global average





**Process Study Sites Hydrographic Moorings** moored sediment trap

Adélie Penguin Colonies

SLOCUM Glider Base

#### Macrozooplankton collection



Photos: A. McDonnell, L. Madin, M. Gleiber, R. Hopcroft, and J. Stone



# Long-term distribution climatology





Abundance average 1993-2016

# Pteropod abundance: north – south gradient



## Pteropod abundance: Coastal – shelf – slope gradient





## L. helicina vs. gymnosome abundance





(predator)

### Environmental controls of pteropod abundance

0.2

0.3



# Increase of Upper Circumpolar Deepwater (UCDW) on WAP shelf





- Characterized by warm temperatures (Tmax > 1.6°C) and high nutrient, CO<sub>2</sub> levels
- 150m below the surface of the Antarctic Circumpolar Current (ACC)
- Floods onto the continental shelf at Marguerite Trough roughly four times each month (Martinson and McKee 2012)

## L. helicina abundance increase near UCDW



### Ocean Acidification in the Southern Ocean





L. helicina collected from PAL LTER study

(Doney 2006, Bednarsek et al. 2014; Comeau et al. 2012; Lischka et al. 2011)

# Aragonite saturation and L. helicina abundance

Aragonite saturation from 1993-2012 Q ٩Q. ര് 3.0 2.5 C ц<u>о</u> ς. A \_\_\_\_\_ Year Limacina helicina abundance from 1993-2012 Individuals  $1000 \, \text{m}^{-3}$ 2002 2003 Year

More corrosive

# Summary and Conclusions

- Evident offshore distribution of pteropods and indication of increasing abundance in south and slope regions overtime
  - Range shifts and hotspots  $\rightarrow$  future work
- Strong predator-prey dynamic between *L. helicina* and gymnosomes
- Weak MEI, low ice, high SST years favor pteropod abundance
- *L. helicina* may prefer warmer, ice free waters possibly due to timing and propagation of the spring bloom as ice melts through the season
- No clear relationship between *L. helicina* abundance and distribution with carbonate parameters
  - Time-series mismatch  $\rightarrow$  future work

## Acknowledgements

Zooplankton Ecology Lab - Past, Present and Future Front - Tricia Thibodeau, Miram Gleiber, Deborah Steinberg, Jeanna Hudson & Violet Elaise, Jami Ivory Back - Brandon Couroy, Jason Landrum, Joshna Stone, Joe Cope



#### Zooplankton ecology lab



# PAL LTER scientists and collaborators





Funding sources: US National Science Foundation, VIMS ICES/PICES Zooplankton Symposium travel fellowship

#### Evidence of aragonite ( $\Omega$ ) undersaturation



Hauri et al. 2015, Biogeosciences Discussion

#### **Anomaly Calculation**

For each pteropod group and year in the time series, the abundance anomaly was calculated using this formula:

$$A'_y = \log_{10}[\overline{A}_y/\overline{A}]$$

 $\overline{A}_{y}$  is the mean abundance of year  $y,\overline{A}$  Type equation here.and is the mean of the yearly means. (O'Brien et al. 2008, ICES zooplankton status report 2006/2007)

\*Stepwise linear regression models, with data in annual anomaly form for the full grid, were used to assess the relative importance of the environmental and climate parameters (sea ice, SAM/MEI, primary productivity, biomass, SST)

#### Macrozooplankton collection



R/V Laurence M. Gould

#### Sort and count on ship



2 m<sup>2</sup> frame, 700 µm mesh upper 120 m



# Long-term trends in abundance



Limacina helicina 1.10 0.75 Abundance Anomaly 0.00 -0.75 -1.17  $\begin{array}{c} 1993\\ 1995\\ 1995\\ 1996\\ 1997\\ 1999\\ 2000\\ 2001\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\ 2002\\$ Year Steinberg et al. 2015, DSR I, updated



p = 0.002