Growth and shrinkage is sex-dependent in Antarctic krill

<u>Geraint Tarling</u>₁, Simeon Hill₁, Helen Peat₁, Sophie Fielding₁, Christian Reiss₂, Angus Atkinson₃

1. British Antarctic Survey, Natural Environment Research Council, Madingley Rd, Cambridge, CB3 0ET, UK

- 2. Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037, USA
- 3. Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK

A number of taxa can shrink

Degrowth is a common trait in taxa with indeterminate growth

Coelenterates (Anthopleura elegantissima)

Urochordates (Clavelina moluccensis)

Echinoderms (Diadema antillarum)

Molluscs (Chiton pelliserpentis)

Degrowth is constrained in vertebrates and arthropods

....with a few exceptions

Marine Iguana - larger individuals decreased in body length during ENSO years

Amblyrhynchus cristatus

Wikelski and Thom 2000

Crustaceans – must moult in order to grow

Seasonal or infrequent moulting e.g. crabs and lobsters

Decrease in body length at moult is not widely observed

Euphausiids – moult continuously

Laboratory evidence that starved krill shrink in body-length

45% decrease in body mass, 7 mm decrease in body length over 211 days

Do krill shrink during winter in their natural environment?

Abyssal feeding by krill - could provide winter food banks

Volume backscattering strength S_v

Clarke and Tyler 2011

Schmidt et al. 2011

Accurate age-structures are required by fisheries yield models to regulate harvesting

Ecosystem-based fishery management model for the Southern Ocean

Constable et al. (2000)

Krillbase – spatially comprehensive database of krill body-length frequency information since 1920s

Krillbase sampling effort by month

Poor winter coverage

CCAMLR krill fishery observer programme

Good winter coverage

Spatial coverage of Krillbase and CCAMLR data

SW Atlantic region

Further datasets for1) South Georgia2) Western Antarctic Peninsula

Accommodation of sampling bias

Therefore, individuals <35 mm body length were not considered

Body-length frequency trajectories differed seasonally betwe<u>en sexes</u>

Sex-ratio of larger individuals was highly skewed towards males during overwinter

Is differential degrowth between sexes the only explanation?

Is immigration or emigration a factor?

No sex-biased migration from one region to the next

Is there a sex-bias in seasonal mortality?

Overall sex-ratio is the same between seasons – even in favour of females during overwinter

Largest body-lengths switch between males and females depending on season

Females reach larger body lengths by midsummer, but are shorter during overwinter

Female growth conforms to a sine-wave growth function

Female and male growth are out of phase – but reach similar maxima

Krill ovaries are large and regress over winter

Ov - ovary

>40% of wet body mass during summer

The seasonal regression of the ovary in females may result in a shrinkage of body-length

Conclusions

- 1. Krill shrink in body length in the natural environment
- 2. Shrinkage occurs in females but not males during overwinter
- 3. Shrinkage is more likely to be a function of the life-cycle than a response to starvation

4. Different growth trajectories of male and female krill must be factored into fishery-production and -management models

Acknowledgements: KRILLBASE contributors, particularly Valarie Loeb, Volker Siegel and Evgeny Pakhomov. CCAMLR fishery observers and the CCAMLR data centre, for allowing analysis of their data under the rules outlined in CCAMLR-XXII, paragraphs 12.1 to 12.6

