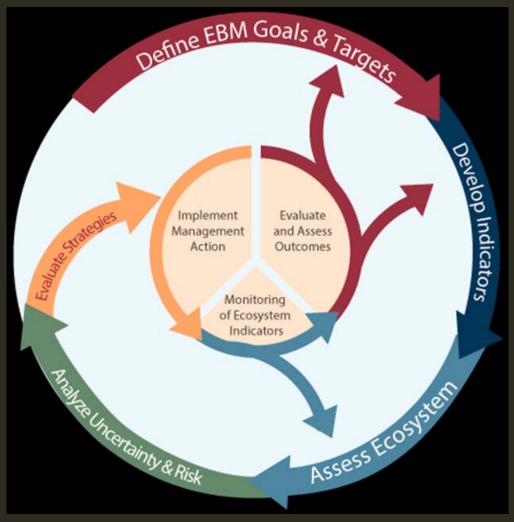


ZOOPLANKTON INDICATORS FOR INTEGRATED ECOSYSTEM ASSESSMENT: SALMON FORECASTING

Hongsheng Bi<sup>1</sup>
William T. Peterson<sup>2</sup>
Alessandra Conversi<sup>3</sup>

University of Maryland, USA
 NOAA Fisheries, USA
 CNR - ISMAR - La Spezia, Italy

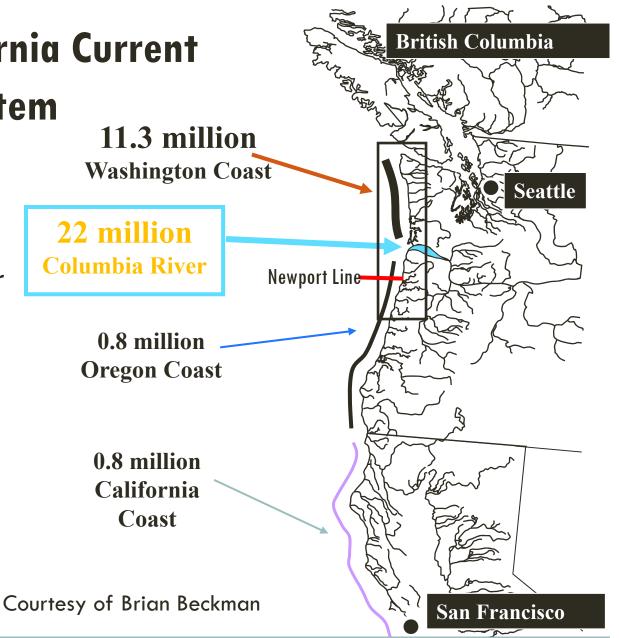
#### INTRODUCTION


Assessing ecosystem

Management objectives

#### Integration of

- Physical
- Chemical
- Biological -- zooplankton
- Human processes


Analyze uncertainty
Evaluate strategies
Multi-year, decadal

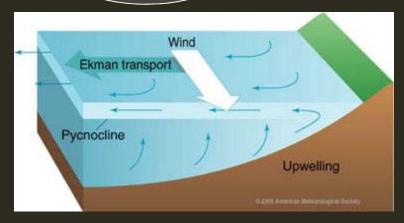


Source: www.noaa.gov/iea

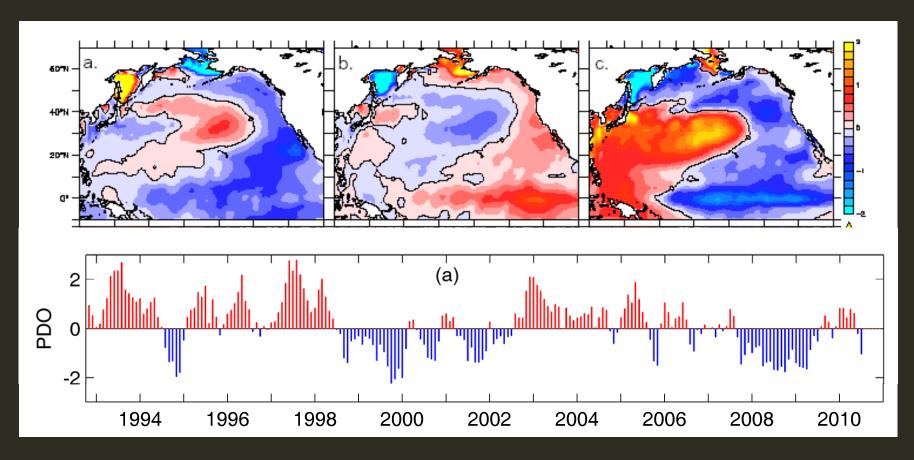
# Northern California Current Regional ecosystem

- Zooplankton
   community structure
   was related to PDO:
   negative-> cold water
   copepods (Hooff and
   Peterson 2006)
- 2. Salmon ocean survival rate was related to PDO: negative -> higher survival (Manuta et al. 1997)




# INTRODUCTION: WINDS AND CURRENT STRUCTURE

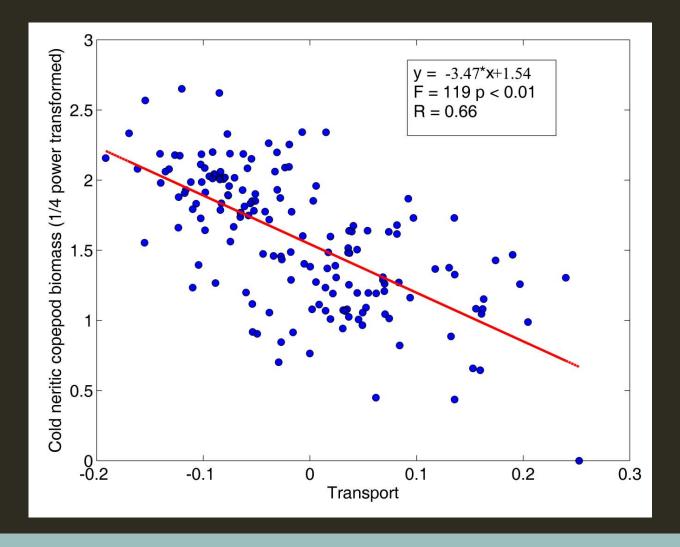
- ■Winter
  - Winds from the south
  - Downwelling
  - Subtropical/southern species transported northward& onshore
- Summer
  - Strong winds from the North
  - Coastal upwelling
  - Northern species transported southward



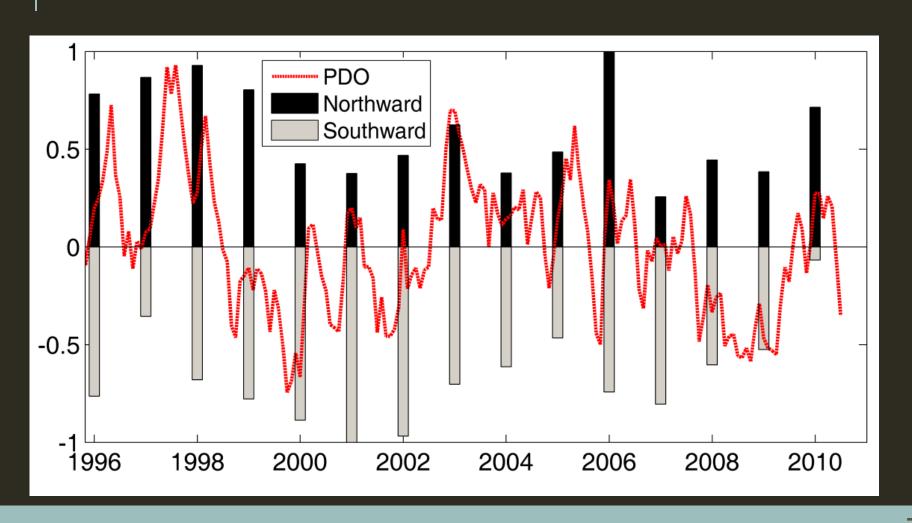








# PHASE SHIFTS BY THE PACIFIC DECADAL OSCILLATION NEGATIVE = COOL; POSITIVE = WARM.




Peterson and Schwing (2003)

# COLD WATER COPEPODS AND TRANSPORT

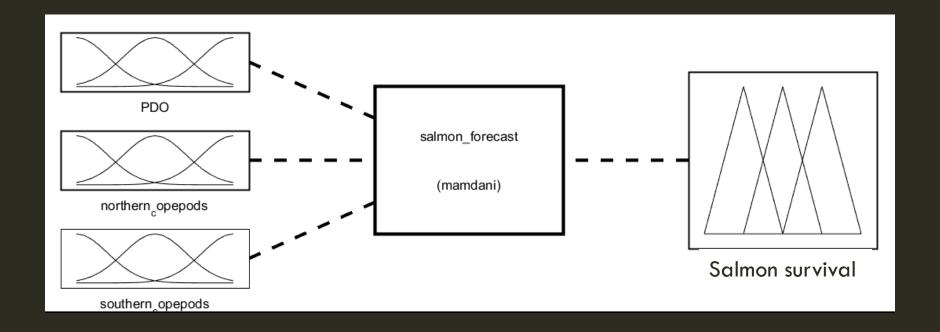
Bi et al. GRL 2011



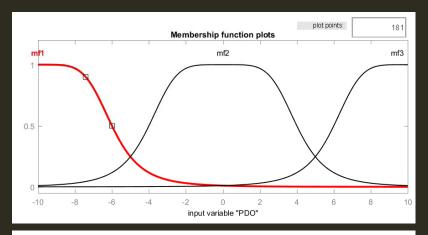
# TRANSPORT AND PDO

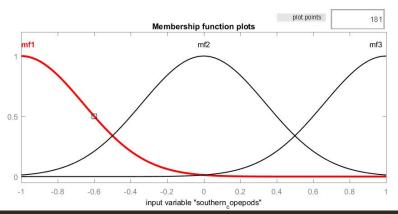


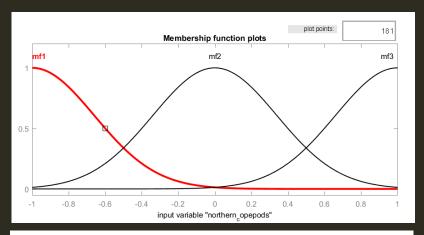
#### FUZZY LOGIC

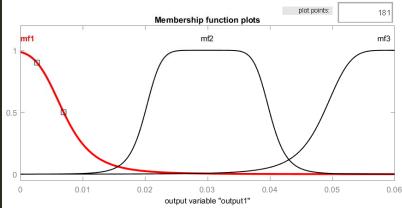

- 1. Use uncertain information such as individual knowledge and experience;
- 2. Combine quantitative and qualitative data;
- 3. Avoid artificial precision
- 4. Produce results that are found more often in the real world

|                                                            |          | reur    |              |            |        |         |        |            |          |      |      |        |      |            |      |       |      |        |
|------------------------------------------------------------|----------|---------|--------------|------------|--------|---------|--------|------------|----------|------|------|--------|------|------------|------|-------|------|--------|
| osystem Indicators                                         | 1998     | 1999    | 2000         | 2001       | 2002   | 2003    | 2004   | 2005       | 2006     | 2007 | 2008 | 2009   | 2010 | 2011       | 2012 | 2013  | 2014 | 2015   |
| PDO                                                        | 16       | 6       | 3            | 12         | 7      | 17      | 11     | 15         | 13       | 9    | 5    | 1      | 14   | 4          | 2    | 8     | 10   | 18     |
| (Sum Dec-March)                                            | 10       | 0       | 5            | 12         | 1      | */      | 11     | 10         | 13       | 9    | 3    | 4      | 19   | *          | 4    | ٥     | 10   | -10    |
| PDO                                                        | 10       | 4       | 6            | 5          | 11     | 15      | 14     | 16         | 12       | 13   | 2    | 9      | 7    | 3          | 1    | 8     | 17   | 18     |
| (Sum May-Sept)                                             | 10       |         |              | -          |        |         | -      |            |          |      | ~    |        | - 1  |            |      | Ĭ.    |      | ***    |
| ONI                                                        | 18       | 1       | 1            | 6          | 12     | 14      | 13     | 15         | 8        | 11   | 3    | 10     | 16   | 4          | 5    | 7     | 9    | 17     |
| Average Jan-June)                                          | 777      | - Th    | 70           | 7          | -      | -       | - 11   | -          | ×.       |      | 120  |        |      |            | , T  | - 60  | ೌ    | 100    |
| 46050 SST                                                  | 48       | 8       | 3            | 4          |        | 7       | 18     | 14         | 5        | 40   | 4    | 9      | 6    | 10         | 44   | 12    | 13   | 44     |
| (*C; May-Sept)                                             | 15       | ٥       | 5            | #          | 1      | 1       | 10     | 14         | 3        | 16   | 2    | 9      | D    | 10         | 11   | 12    | 4.5  | 17     |
| Upper 20 m T                                               | 17       | 11      | 8            | 10         | 6      | 14      | 15     | 12         | 13       | 5    | 1    | 9      | 16   | 4          | 3    | 7     | 2    | 18     |
| (*C: Nov-Mar)                                              | 4.7      | 11      | ۰            | 10         | U      | 14      | 13     | 12         |          |      | 1    |        | 10   | - 4        | 3    | - 1   | 2:   | 10     |
| Upper 20 m T                                               | 14       | 11      | 13           | 4          | 1      | 3       | 18.    | 16         | 7        | 8    | 2    | 5      | 12   | 10         | 6    | 15    | 17   | 9      |
| (*C: Mav-Sept)                                             | 44       |         | 44           |            | +      | 70      | +44.   | 40         |          | -    | -    |        | 12   | 10         | ŭ    | -     | **   | -      |
| Deep temperature                                           | 18       | 6       | 8            | 4          | 1      | 9       | 12     | 14         | 10       | 5    | 2    | 7      | 13   | 11         | 3    | 17    | 16   | 15     |
| (*C; May-Sept)                                             |          |         | 1000         |            |        |         |        |            |          | 2 "  |      |        |      | -          |      |       |      | 1000   |
| Deep salinity                                              | 18       | 3       | 7            | 4          | 5      | 14      | 15     | 8          | 6        | 1    | 2    | 11     | 16.  | 10         | 9    | 13    | 17   | 12     |
| (May-Sept)                                                 |          |         | 111          | 1.4        |        |         |        |            |          |      |      |        |      |            |      |       |      | 3      |
| epod richness anom.                                        | 17       | 3       | 1            | 7          | 6      | 13      | 12     | 16         | 14       | 11   | 8    | 10     | 15   | 4          | 5    | 2     | 9    | 18     |
| o. species; May-Sept)                                      | 30       | 3       | -            | 1          |        | 40      | 12     | 110        | 377      | 17.7 | 0    | 10     | 45   | 7          | -    | 6     | ,    | 40     |
| pepod biomass anom.                                        | 17       | 13      | 9            | 10         | 3      | 15      | 12     | 18         | 14       | 11   | 6    | 8      | 7    | 1          | 2    | 4     | 5    | 16     |
| ng C m <sup>-5</sup> : Mav-Sept)                           |          | - 77    | ್            |            |        |         |        |            |          |      | -    |        | - 1  |            | ~    | -     | - 7  |        |
| pepod biomass anom.                                        | 18       | 2       | 5            | 4          | 3      | 13      | 14     | 17         | 12       | 10   | 1    | 7      | 15   | 9          | 8    | 6     | 11   | 16     |
| ng C m <sup>-s</sup> : May-Sept)                           | -        |         |              |            |        | -       |        | -          |          |      |      |        |      |            | _    |       |      |        |
| iological transition                                       | 17       | 11      | 6            | 7          | 8      | 12      | 10     | 16         | 15       | 3    | 1    | 2      | 14   | 4          | 9    | 5     | 13   | 18     |
| (day of year)                                              | 100      | 19500   |              |            |        |         | - 2000 |            |          |      | 1000 | 3      | -    |            | 000  |       |      |        |
| hyoplankton biomass                                        | 18       | 9       | 2            | 5          | 7      | 16      | 15     | 11         | 14       | 23   | 1    | 10     | 3    | 12         | 8    | 6     | 17   | 4      |
| (C 1000 m <sup>-5</sup> : Jan-Mar)<br>nook salmon juvenile |          |         |              |            |        |         |        |            |          |      |      | 0      |      |            |      |       |      |        |
| 100                                                        | 17       | 4       | 5            | 15         | 10     | 12      | 16     | 18         | 11       | 8    | 1    | 6      | 7    | 14         | 3    | 2     | 9    | 13     |
| ches (no. km²: June)<br>sho salmon juvenile                |          |         | S            |            |        |         |        |            |          |      |      | 00     |      |            |      |       |      | Y-1    |
| ches (no. km²: June)                                       | 47       | 7       | 12           | 5          | 6      | 2       | 14     | 18         | 15       | 3    | 4    | 9      | 10   | 13         | 16   | 1     | 11   | 8      |
| cnes (no. km : June)                                       |          |         | 2            |            | 0 0    |         |        |            |          |      |      |        |      |            |      |       |      | 70     |
| Mean of ranks                                              | 16.5     | 6.6     | 5.9          | 6.8        | 5.8    | 11.7    | 13.9   | 14.9       | 11.3     | 8.5  | 2.7  | 7.5    | 11.4 | 7.5        | 6.1  | 7.5   | 11.7 | 14.5   |
| Mace 12 Patrick PC 457 (254 90) 1                          | 00000    | 1000    | -            | A7 × 803   | 20 00  |         |        | (Attended) | 10001000 |      | 2000 |        | 2000 | 71.75      |      | 10000 |      | 200000 |
| nk of the mean rank                                        | 18       | 5       | 3            | 6          | 2      | 13      | 15     | 17         | 11       | 10   | 1    | 7      | 12   | 7          | 4    | 7     | 13   | 16     |
|                                                            |          |         |              |            |        |         |        |            |          |      |      |        |      |            |      |       |      |        |
| stem Indicators not inc                                    | luded i  | n the m | ean o        | f ranks    | or sto | tiction | Lanali | cac        |          |      |      |        |      |            |      |       |      |        |
| hysical Spring Trans                                       |          |         | Anna Carrier | The second |        |         |        |            | 1000     |      |      |        | 195  | 650        | 1000 | - 35  |      | 100.00 |
| based (day of year)                                        | 3        | 6       | 17           | 14         | 4      | 11      | 13     | 18         | 11       | 1    | 5    | 2      | 7    | 10         | 15   | 8     | 16   | 9      |
| hysical Spring Trans                                       |          |         |              |            | -      | 40      |        |            |          |      |      |        |      |            | 44   |       |      | _      |
| rographic (day of year)                                    | 17       | 3       | 13           | 8          | 5      | 12      | 14     | 18         | 6        | 9    | 1    | 9      | 16   | 3          | 11   | 2     | 15   | 7      |
| Jpwelling Anomaly                                          |          |         | 100          | 100        | 7      | 40      | 44     | 4.6        |          |      | -    | To pay | 4.6  | 44         | 44   | 10    | 24   | 1      |
| (April-May)                                                | 8        | 2       | 15           | 4          | 1      | 12      | 11     | 18         | 8        | 3    | 5    | 6      | 13   | 15         | 13.  | 10    | 17   | 1      |
| th of Upwelling Season                                     | 6        | 2       | 16           | 10         | 1      | 11      | 8      | 18         | 5        | 3    | 7    | 3      | 13   | 15         | 13   | 12    | 17   | 9      |
| UI based (days)                                            |          | -       | -10          | 10         | 1      | 11      |        | +0         | -2       | 2    | 1    | ,      | 44,  | ALTE:      | 4.0  | 12    | **   | 3      |
| I-5 (*C;                                                   | 8        | 6       | 5            | 4          | 1      | 3       | 18     | 15         | 9        | 16   | 2    | 17     | 10   | 7          | 13   | 12    | 14   | 11     |
| May-Sept)                                                  |          |         |              |            | -      | - 1     |        | 77         | <u></u>  | -0   |      | **     | 10   | 100        |      |       | 27   | **     |
| pod Community Index                                        | 18       | 5       | 4            | 8          | 1      | 13      | 14     | 16         | .15      | 10   | 2    | 6      | 12   | 9          | 7    | 3     | 11   | 17     |
| MDS axis 1 scores)                                         | N. T. W. |         |              | neito .    |        | -       |        |            |          |      | -    |        | - 25 | - STATE OF |      | - TO  |      | 1000   |
| Coho Juv Catches                                           | 11       | 2       | 1            | 4          | 3      | 6       | 12     | 14         | 8        | 9    | 7    | 15     | 13   | 5          | 10   | NA    | NA   | NA     |
| no. fish km <sup>-1</sup> : Sept)                          |          |         |              |            |        |         |        |            |          |      |      |        |      |            |      |       |      |        |


- Difference between physical and biological indicators
  - 2015
  - 2012
- Difference within one biological indicators
  - 2013, 2007
  - Very difficult to make the call

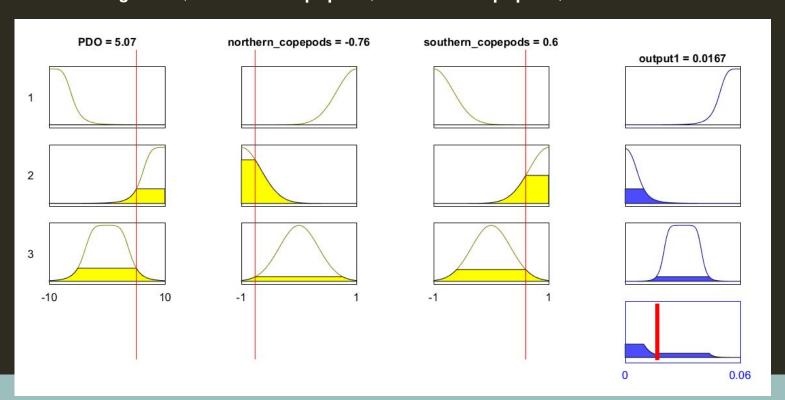

### FUZZY LOGIC SYSTEM


Started from three input variables: PDO, Nothern Copepods, Southern copepods, one output variable: salmon survival rate




## MEMBERSHIP FUNCTIONS










#### RULES

- 1. positive PDO, less northern copepods, more southern copepods, survival low
- 2. negative PDO, more northern copepods, leas southern copepods, high survival,
- 3. mid-range PDO, northern copepods, southern copepods, medium level survival



### SUMMARY

It overcomes the uncertainties in the empirical relationships, interactions among different variables.

It works in general, but it requires more training for better results.

Flexibility in setting up membership functions, but more objective approaches would be better.