Microplastic ingestion: the role of taste

Renske Vroom^{1,2}, <u>Claudia Halsband¹</u>, Ellen Besseling², Bart Koelmans²

¹ Akvaplan-niva, Fram Centre, Tromsø, Norway
² Wageningen University and Research Centre, The Netherlands

Sources of microplastics

• Microplastics: < 5 mm in size

Microplastics in marine environments: occurrence, distribution and effects

- Plastics form the largest part of marine debris
- Distribution data sporadic and inconsistent
- Macrofauna + macroplastic: starvation, suffocation, entanglement
- Emerging knowledge on microplastics effects on organisms

Organism	Species	Polymer	Size (µM)	Concentrations	Duration	Ingestion (Y/N/NA)	Effect (L/S- L/N/NA	ze	Organ	
Sea urchin (larva)	T. gratilla	PE (fluorescent)	10-40	1,10,100 and 300 particles/mL	5 days	Y	Ν		Gut WO	
Polychaetes	A. marina	PVC (unplasticized)	Dust	0 - 5% sediment weight	4 weeks	Y	S-L			
Polychaetes	.A. marina	PS (fluorescent) (-/+ PCB in sediment)	400-1,300	0 - 7.4% sediment weight	28 days	Υ	S-L		WO	
Blue mussel	M. edulis	PS (fluorescent)	3 and 9.6	15,000 individual spheres	3h and 2 h exposure	Y	S-L			
Barnacles Lugworms	S. balanoides .A. marina	Natural occuring microplastics	NA	1g/L 1.5g/L	NA	Y	NA		Gut	
Shore crab	C. maenas	Polystyrene (fluorescent)	8 - 10	4.0 × 10₃ microspheres/·L	24 hours 21 days	Υ	NA			
Blue mussel	M. edulis	High-density polyethylene (HD-PE)	0–80 µm	2.5 g HDPE-fluff	96 hours	Υ	S-L			

environments: Occurrence, distribution and effects

N/V-

REPORT SNO, 6754-2014

Microplastics in marine

Microplastics in arctic marine environments: ecosystem health implications

Estimated flux to the Arctic: 62,000 – 105,000 tonnes year⁻¹ (Zarfl & Matthies 2010)

RA

- Role of zooplankton
 - \circ ingestion/bioaccumulation
 - o contaminant transfer (e.g. POPs to lipids)
 - o food chain effects (biomagnification)
 - o Vertical transport
 - o C-flux perturbations

Microplastics in arctic waters

- 0 11.5 particles m⁻³ (Lusher et al. 2015)
- 38 234 particles m⁻³ in ice cores (Obbard et al. 2014)
- human activities increase: shipping, tourism, offshore industries

 \rightarrow more microplastics (?)

Lusher et al. 2015

Microplastics and zooplankton

- Overlap in size between microplastics and typical food items (µm range)
- Plastic ingestion is experimentally confirmed (Cole et al. 2013, Setälä et al. 2014)
- Impacts on survival, feeding and fecundity (Cole et al. 2015, Lee et al. 2013)

Photos: Nerheim et al. in prep, Carson et al. 2013, Reisser et al. 2014

"epiplastic diatoms"

Akvaplan.

• Plankton sampling in Håkøybotn, Tromsø (Norway)

Akvaplan

- Fluorescent polystyrene (PS) beads, 15 and 30 µm diameter
- Fouled particles: soaking 3 weeks in native seawater
- Incubation in filtered (1 µm) seawater in 0.5 L glass bottles
- Rotating plankton wheel
- Observations with a fluorescence stereoscope

Microplastics and zooplankton: zooplankton taxa and plastic size

- 4 species:
 - Small copepods: Acartia longiremis, Pseudocalanus spp.
 - Large copepod: Calanus finmarchicus
 - Decapod larvae
- 15/30 µm PS beads, control without microplastics
- 10 individuals per bottle
- 24h exposure
- 0.333 mg L⁻¹ = 23/148 beads mL⁻¹

Microplastics and zooplankton: zooplankton taxa and plastic size

Microplastics and biofouling: effect on ingestion

- Acartia longiremis ♀
- 200 particles mL⁻¹
- 5 replicates @ 10 individuals
- 24 hours

- Calanus finmarchicus CV
- 100 particles mL⁻¹
- 10 replicates @ 10 individuals
- 4 hours
- Endpoints: % ingesting ind., # ingested, survival

Microplastics and biofouling: effect on ingestion

Positive effect of biofouling

t-test: *Acartia* p= 0.026 *Calanus* p= 0.007

Microplastics and biofouling: effect on ingestion

Microplastics and biofouling: conclusions

- PS-bead ingestion is species-specific and bead size dependent
- Body size and filter mesh size of feeding apparatus are important
- Encounter and filtration rates determine plastic uptake
- → Calanus > Acartia
- Fouled beads were more frequently ingested than clean beads
- Selectivity difference between species: Calanus less selective than Acartia
- → Chemical perception: biofilms disguise plastic as nutritious food
- Survival was not affected (not shown, short-term experiment)
- High proportion of beads was egested after 4+ hours

Microplastics and biofouling: open questions

- What determines individual intra-specific differences (high variability)?
 - Why are some individuals more selective than others?
- How will varying plastic properties affect ingestion dynamics?
 - \circ Polymer type
 - Shape (beads vs. fragments vs. fibers)
- How can ingestion *in situ* at realistic concentrations be determined?
- Are there chronic and/or sublethal health effects on zooplankton?
- At what rates are microplastics transferred to the next trophic level?
 - Planktivorous zooplankton (e.g. chaetognaths)
 - o Fish larvae
 - \circ seabirds

Microplastics and biofouling: acknowledgements

Special thanks to

- The crew of RV *Hyas* (University of Tromsø)
- Fredrika Norrbin & Marit Reigstad (University of Tromsø)
- Thor-Arne Hangstad, Lauri Kapari et al. at the Akvaplan Kraknes lab
- The Fram Centre Flagship "Hazardous Substances"
- Michael Greenacre, Akvaplan-niva & Evert-Jan Bakker, Wageningen University & Research Centre

